МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Программа профильного вступительного испытания для поступающих на базе среднего профессионального образования, проводимого ТГУ самостоятельно

Органическая химия

1. Общие положения

- 1.1. Вступительное испытание по органической химии проводится в форме автоматизированного тестирования.
 - 1.2. Время прохождения вступительного испытания 90 минут.
- 1.3. Результат вступительного испытания оценивается по стобалльной шкале.

2. Содержание вступительного испытания

2.1. Модуль Теоретические основы органической химии

- 2.1.1. Теория строения А.М. Бутлерова. Электронная структура атома углерода и химические связи.
 - 2.1.2. Взаимное влияние атомов в молекулах органических соединений.

2.2. Модуль Углеводороды

- 2.2.1. Алифатические углеводороды
- 2.2.1.1. Алканы.

Гомологический ряд алканов. Номенклатура и изомерия. Конформации алканов. Радикалы алканов: строение и номенклатура. Способы получения (реакция Вюрца, получение из солей карбоновых кислот). Природные источники алканов. Переработка нефти. Тетраэдрическая конфигурация атома углерода. Образование σ -связей. Зависимость физических свойств от строения. Реакции свободнорадикального замещения, цепные реакции, окисление алканов. Вазелин. Вазелиновое масло. Парафин.

2.2.1.2. Алкены.

Гомологический номенклатура ряд, алкенов. Структурная пространственная изомерии. Природные источники. Способы получения элиминирования. Правило А.М. Зайцева. Строение реакции Образование о и л-связей. Физические свойства. Химические свойства. Реакции присоединения: гидрирования, гидрогалогенирования, гидратации, галогенирования. Реакция окисления Вагнера. Современная трактовка правила В.В. Марковникова. Механизм реакции присоединения. Понятие о полимерах и их применение в медицине. Применение этилена.

2.2.1.3. Алкины.

Гомологический ряд, номенклатура, изомерия. Строение ацетилена. Образование σ и π связей. Величины: энергия и длина двойной связи. Способы получения. Физические свойства. Химические свойства алкинов. Реакции электрофильного присоединения: галогенирования, гидрогалогенирования, гидратации. Реакции окисления, восстановления. Кислотные свойства алкинов. Применение ацетилена в народном хозяйстве и органическом синтезе. Влияние кратной связи на физиологическую активность соединений.

2.2.1.4. Алкадиены.

Классификация диеновых углеводородов. Понятие о сопряжении. Строение диеновых углеводородов с сопряженными связями (бутадиен-1,3) и их свойства. Реакции 1,2- 1,4-присоединения. Реакции полимеризации. Общие понятия о высокомолекулярных соединениях: мономер, структурное звено, полимер; каучук.

2.2.1.5. Алициклические углеводороды.

Классификация, номенклатура и изомерия циклоалканов. Конформационная изомерия. Строение, химические свойства малых (3-х и 4-х-членных) циклов и больших (5-ти и 6-ти членных). Теория Байера. Представление о терпеноидах и стероидах (ментол, камфора, терпингидрат, гликозиды, гормоны).

2.2.2. Ароматические углеводороды.

Классификация, номенклатура и изомерия аренов. Строение бензола, признаки ароматичности, правило Хюккеля. Реакции электрофильного замещения. Электронодонорные (I рода) и электроноакцепторные (II рода) заместители, их направляющее действие в реакциях SE, Реакции окисления, восстановления, боковой цепи. Применение бензола, толуола, фенантрена в синтезе лекарственных веществ.

2.2.3. Галогенопроизводные углеводородов.

Классификация. Номенклатура: радикально функциональная заместительная. Зависимость свойств галогеналканов от строения радикала и нуклеофильного галогена. Реакции замещения (гидролиз, аммонолиз, солями кислоты). взаимодействие циановодородной Реакции элиминирования. Реакции ароматических галогенопроизводных.

2.3. Модуль Гомофункциональные и гетерофункциональные соединения

- 2.3.1. Гидроксилсодержащие производные углеводородов
- 2.3.1.1. Кислотные и основные свойства органических соединений. Типы кислот и оснований.

Современные представления о кислотах и основаниях. Теория Бренстеда - Лоури. Основные типы органических кислот и оснований. Сопряженные кислоты и основания. Самостоятельная работа обучающихся: Работа с учебной литературой по кислотным и основным свойствам органических соединений (в том числе и лекарственных препаратов). Современные представления о кислотах и основаниях. Теория Бренстеда-Лоури. Сопряженные кислоты и основания. Кислотные свойства органических соединений с водородосодержащими функциональными группами (спирты, фенолы, тиолы, карбоновые кислоты, амины). Основные свойства органических соединений. π -основания и π -основания. Теория Льюиса.

2.3.1.2. Спирты.

Классификация спиртов. Гомологический ряд предельных одноатомных спиртов. Радикало-функциональная и заместительная номенклатуры спиртов. Способы получения одноатомных спиртов. Межмолекулярная водородная связь, ее влияние на физические свойства спиртов. Химические свойства:

кислотно-основные, реакции нуклеофильного замещения, дегидратации, окисления, восстановления. Сравнительная характеристика свойств одноатомных и многоатомных (3-х атомных) спиртов. Этанол, глицерин.

2.3.1.3. Фенолы.

Классификация, номенклатура, способы получения и химические свойства фенолов одноатомных в сопоставлении со спиртами. Кислотные свойства. Реакции нуклеофильного замещения, взаимодействие с галогенопроизводными. Реакции электрофильного замещения в ароматическом ядре: галогенирование, нитрование, сульфирование. Окисление фенолов. Качественные реакции на фенолы. Фенол. Резорцин. Адреналин. Применение в медицине. Трехатомные фенолы. Охрана окружающей среды от воздействия промышленных отходов, содержащих фенол.

2.3.2. Оксосоединения, альдегиды. Общая характеристика кетонов.

Электронное строение оксогруппы. Номенклатура, способы получения альдегидов. Реакции нуклеофильного присоединения: гидрирование, гидратация, присоединение спирта, аминов, цианидов, гидросульфита натрия. Окисление, восстановление альдегидов. Полимеризация и конденсация. Реакции с участием углеводородного радикала. Формальдегид. Гексаметилентетрамин. Кетоны. Применение альдегидов, кетонов.

2.3.3. Карбоновые кислоты и их функциональные производные

2.3.3.1. Одноосновные карбоновые кислоты.

Классификация, номенклатура, способы получения монокарбоновых кислот и их функциональных производных. Строение карбоксильной группы. Химические свойства: кислотность, реакция этерификации, образование галогенангидридов, амидов кислот. Реакции с участием радикалов монокарбоновых кислот. Муравьиная кислота. Уксусная кислота. Бензойная кислота. Физические свойства. Применение муравьиной, уксусной, бензойной кислот.

2.3.3.2. Двухосновные карбоновые кислоты. Амиды кислот.

Гомологический ряд. Номенклатура. Специфические свойства двухосновных карбоновых кислот. Их кислые и средние соли. Щавелевая, малоновая, янтарная, глутаровая кислоты. Амиды кислот. Амиды угольной кислоты. Номенклатура. Получение. Химические свойства. Образование солей, гидролиз мочевины.

2.3.3.3. Простые и сложные эфиры. Жиры.

Классификация. Номенклатура простых эфиров. Способы получения из галогенопроизводных и спиртов. Строение, физические и химические свойства простых эфиров. Основность. Реакции расщепления простой эфирной связи симметричных и несимметричных эфиров. Окисление простых эфиров. Диэтиловый эфир. Димедрол. Физиологическое действие на организм и применение. Номенклатура сложных эфиров. Реакция этерификации. Кислотный щелочной гидролиз эфиров. Нитроглицерин. сложных И Применение. Классификация. Состав. Номенклатура. Физические и химические свойства жиров. Гидролиз кислотный и щелочной, гидрогенизация жидких жиров. Окисление жиров. Определение качества жира: температура плавления,

иодное число, кислотное число, число омыления. Применение жиров в фармации. Биологическая роль жиров.

2.3.4. Амины.

Классификация аминов. Номенклатура. Способы получения. Физические влияние атомов аминах. Основность. В Химические свойства алифатических Реакции аминов. диазотирования первичных ароматических аминов. Строение солей диазония, их реакции с И аминами. Реакции замещения диазокатиона функциональные группы в солях диазония. Понятие о хромофорах и ауксохромах.

- 2.3.5. Азо-, диазосоединения. Азокрасители.
- Азо- и диазосоединения. Получение солей диазония, образование азокрасителей.
 - 2.3.6. Гетерофункциональные кислоты
 - 2.3.6.1. Гидроксикислоты.

Класификация гидроксикислот. Номенклатура. Оптическая активность, изомерия. Энантиомеры. Диастереомеры. Рацематы. Мезоформы. Химические свойства их как бифункциональных соединений. Отношение к нагреванию α -, β -, γ -гидроксикислот. Молочная кислота и ее соли. Винная кислота. Сегнетова соль. Лимонная кислота. Цитрат и гидроцитрат натрия.

2.3.6.2. Фенолокислоты.

Кислотность, химические свойства: реакции карбоксильной группы, реакции фенольного гидроксила, декарбоксилирование. Качественные реакции Фенолокислоты. Салициловая кислота. Эфиры салициловой кислоты: ацетилсалициловая кислота, фенилсалицилат. Применение производных фенолокислот в медицине, фармации

2.3.6.3. Аминокислоты.

Классификация аминокислот. Номенклатура. Строение. Химические свойства: реакции карбоксильной группы, реакции за счет аминогруппы. Отношение к нагреванию α-, β-, γ- аминокислот. Пептидная связь. Медикобиологическое значение аминокислот. Глютаминовая кислота. Парааминобензойная кислота. Анестезин.

2.4. Модуль. Природные органические соединения

2.4.1. Углеводы.

Биологическая роль углеводов. Классификация. Номенклатура. Строение. Кольчато-цепная таутомерия. Оптическая изомерия моносахаридов. Формулы Фишера и Хеуорса. Химические свойства моносахаридов. Реакции открытой и циклической форм. Гликозиды. Их свойства, распространение в природе, применение в медицине. Дисахариды: сахароза, лактоза. Гидролиз. Полисахариды: крахмал. Строение. Гидролиз крахмала.

2.4.2. Белки.

Классификация. Строение белков. Свойства белков. Качественные реакции на белки. Биологическое значение белков.

2.4.3. Гетероциклические соединения.

Классификация. Номенклатура. Ароматический характер важнейших гетероциклических систем (пиррол, пиридин, пиримидин, пурин). Электронное строение пиррольного и пиридинового атома азота. Химические свойства: кислотно-основные, реакции электрофильного замещения, восстановления. Фуран, тиофен, пиррол, диазолы. Фурацилин. Антипирин. Анальгин.

3. Рекомендуемая литература

- 1. Органическая химия: учебник для СПО / А.И. Артеменко. М.: Кнорус. 2018. 536 с.
- 2. Органическая химия: учебник для СПО / И.А. Пресс. М.: Лань. 2021. 432 с.
- 3. Органическая химия: учебник для СПО / С.Э. Зурабян, А.П. Лузин; под ред. Н.А. Тюкавкиной. М.: ГЭОТАР-Медиа. 2016. 384 с.

Разработчик	программы	
-------------	-----------	--

доцент, к.т.н.	Tpouf	М.А. Трошина
----------------	-------	--------------

Приложение к программе вступительного испытания

ШКАЛА ОЦЕНИВАНИЯ

При приеме на обучение по программам бакалавриата, программам специалитета, программам магистратуры результаты каждого вступительного испытания, проводимого ТГУ, оцениваются по **100-балльной** шкале.

Результат в баллах
$$= \frac{\text{Количество верных ответов}}{\text{Количество заданий в тестовой дорожке}} \times 100,$$

где:

Результат в баллах – результат вступительного испытания поступающего (по **100-балльной шкале**).

Количество верных ответов — количество верных ответов, данных поступающим, при выполнении заданий в тестовой дорожке.

Количество заданий в тестовой дорожке — количество заданий, которые необходимо выполнить поступающему во время вступительного испытания, в соответствии с программой вступительного испытания.

Минимальное количество баллов, подтверждающее успешное прохождение вступительного испытания.