МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

УТВЕРЖДАЮ

Заместитель председателя приемной комиссии ТГУ Э.С. Бабошина 2017г.

ПРОГРАММА вступительного испытания

«СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ» при приеме на обучение по программам магистратуры

13.04.02 Электроэнергетика и электротехника

«Режимы работы электрических источников питания, подстанций, сетей и систем»

Руководитель магистерской программы – Вахнина Вера Васильевна, д.т.н., профессор

«Техническое и информационное обеспечение интеллектуальных систем электроснабжения»

Руководитель магистерской программы – Вахнина Вера Васильевна, д.т.н., профессор

«Энергосбережение и энергоэффективность»

Руководитель магистерской программы – Черненко Алексей Николаевич, к.т.н.

1. Пояснительная записка

1.1. Цель магистерской программы **«Режимы работы электрических источников питания, подстанций, сетей и систем»**:

- овладение глубоким пониманием профессиональных практических проблем в области электроэнергетики и электротехники, управленческими умениями и навыками, приемами аналитической, консалтинговой деятельности;
- освоение наиболее важных и устойчивых знаний, требующих углубленной фундаментальной и специальной подготовки в области электроэнергетики и электротехники и обеспечивающих целостное восприятие научной картины мира;
- развитие творческого потенциала, выработка у магистрантов готовности к решению инновационных нестандартных задач в области электроэнергетики и электротехники, умения быстро перестраивать свою деятельность в связи с изменением внешних условий;
- получение знаний, умений, навыков и компетенций, позволяющих выполнять наиболее ответственные работы на инновационных предприятиях электроэнергетической отрасли и в промышленности в соответствии с современными достижениями науки;
- овладение передовыми технологиями проектирования, эксплуатации, модернизации и оптимизации систем генерации, передачи, распределения и потребления электроэнергии; технологиями автоматизированного управления режимами систем генерации, передачи, распределения и потребления электроэнергии.

1.2. Цель магистерской программы **«Техническое и информационное обеспечение интеллектуальных систем электроснабжения»**:

- овладение глубоким пониманием профессиональных практических проблем в области электроэнергетики и электротехники, управленческими умениями и навыками, приемами аналитической, консалтинговой деятельности;
- освоение наиболее важных и устойчивых знаний, требующих углубленной фундаментальной и специальной подготовки в области электроэнергетики и электротехники и обеспечивающих целостное восприятие научной картины мира;
- развитие творческого потенциала, выработка у магистрантов готовности к решению инновационных нестандартных задач в области электроэнергетики и электротехники, умения быстро перестраивать свою деятельность в связи с изменением внешних условий;
- получение знаний, умений, навыков и компетенций, позволяющих осуществлять выбор и разработку инновационных компонентов и технологий, обосновывать методы и средства систем мониторинга и защиты от внешних воздействий, систем управления в интеллектуальных системах электроснабжения;
- овладение ключевыми компетенциями в научной и технологических сферах, которые необходимы для реализации новой концепции Smart Grid («умных» или «интеллектуальных» электрических сетей) в России.

- 1.3. Цель магистерской программы **«Энергосбережение и энергоэффективность»**:
- овладение глубоким пониманием профессиональных практических проблем в области электроэнергетики и электротехники, управленческими умениями и навыками, приемами аналитической, консалтинговой деятельности;
- освоение наиболее важных и устойчивых знаний, требующих углубленной фундаментальной и специальной подготовки в области электроэнергетики и электротехники и обеспечивающих целостное восприятие научной картины мира;
- развитие творческого потенциала, выработка у магистрантов готовности к решению инновационных нестандартных задач в области электроэнергетики и электротехники, умения быстро перестраивать свою деятельность в связи с изменением внешних условий;
- получение знаний, умений, навыков и компетенций, позволяющих осуществлять выбор, разработку, обоснование методов и средств обеспечения энергосберегающих мероприятий и повышения энергоэффективности, как на стадии производства энергии, так и на стадии её использования в различных технологических процессах и установках;
- овладение передовыми технологиями решения технических, организационных и экономических вопросов внедрения и реализации сложных и технологически совершенных энергосберегающих проектов для повышения энергоэффективности российской экономики
- 1.4. Программа вступительного испытания сформирована на основе федерального государственного образовательного стандарта высшего образования по программе бакалавриата направления подготовки 13.03.02 «Электроэнергетика и электротехника».
- 1.5. Абитуриент, поступающий для обучения по направлению подготовки 13.04.02 «Электроэнергетика и электротехника», должен знать:
 - основные принципы построения и расчета электрических сетей;
 - теорию и методы расчета ожидаемых электрических нагрузок;
- схемы и способы распределения электроэнергии при напряжении до и выше 1000 B;
 - методы расчета и размещения средств компенсации реактивной мощности;
 - методы расчета экономии электрической энергии в электрических сетях;
- особенности расчетов токов короткого замыкания в сетях до и выше 1000 В;
 - алгоритмы расчета несимметричных режимов в СЭС;
- критерии статической и динамической устойчивости электропередачи и узлов нагрузки;
- методику выбора аппаратов защиты и управления в электрических сетях до и выше 1000 B;
 - режимы работы нейтралей в электроустановках;

- принципы функционирования устройств релейной защиты, современных систем автоматики управления нормальными режимами и противоаварийной автоматики;
- требования к нормированию и измерениям показателей качества электроэнергии.

2. Порядок проведения вступительного испытания

- 2.1. Вступительное испытание (экзамен) проводится в форме автоматизированного тестирования.
 - 2.2. Тест включает в себя 50 вопросов.
 - 2.3. Вопросы соответствуют содержанию вступительного испытания.
 - 2.4. Время тестирования 90 минут.
- 2.5. Абитуриент обязан иметь при себе документ, удостоверяющий личность и гражданство, а также пропуск, выданный приемной комиссией.

3. Содержание вступительного испытания

- 3.1. Модуль «Системы электроснабжения»
- 3.1.1. Электроэнергетические системы и сети

Состав и структура электроэнергетических систем; технологические режимы электростанций различного типа; регулирование графиков нагрузки на электростанциях; участие электростанций различного типа суммарной нагрузки системы; общие принципы компоновки электростанций; собственные нужды электростанций разных типов; линии электрической сети напряжением выше 1000 В; линии электрической сети напряжением ниже 1000 В; воздушные линии, кабельные линии, токопроводы; особенности исполнения и основы проектирования электрических сетей; учет надежности электроснабжения потребителей при проектировании электрических сетей; расчеты режимов электрических сетей; методы расчета потерь электрической энергии электрических сетях.

3.1.2. Релейная защита и автоматизация систем электроснабжения

Виды повреждений и ненормальные режимы работы элементов систем электроснабжения; устройства релейной защиты; токовые защиты; дистанционные защиты; дифференциальные защиты; газовые автоматическое повторное включение выключателей; автоматический источника питания; автоматическая частотная резервного разгрузка подержания нормального режима работы генераторов; автоматика силовых трансформаторов; устройства синхронизма синхронных электродвигателей и генераторов.

3.1.3. Электроснабжение

Основные характеристики потребителей и приемников электроэнергии; режимы работы промышленных электротехнических установок, режимы их электродвигатели производственных работы; механизмов; электротехнологические установки; преобразовательные установки; графики электрических нагрузок, методы расчета электрических нагрузок; распределение электроэнергии при напряжении до 1000 В; схемы сетей напряжением до 1000 В; цеховые и заводские трансформаторные подстанции; выбор типов и исполнений трансформаторных подстанций; компоновка подстанций; мощности цеховых трансформаторных подстанций по полной мощности цеха, по условиям надежности, плотности нагрузки цеха, с учетом компенсации реактивной мощности; способы компенсации реактивной мощности в цеховых сетях промышленных предприятий; расчет сетей по нагреву, по потере напряжения, по экономической плотности тока и защита сетей переменного тока 1000 напряжением В; способы регулирования ДО напряжения распределительных сетях промышленных предприятий и на подстанциях; методы расчета экономии электрической энергии в электрических сетях.

3.1.4. Переходные процессы в электроэнергетических системах

Электромагнитные переходные процессы при симметричных нарушениях работы электроэнергетических систем; системы единиц и схемы замещения электроэнергетических систем для расчета режима короткого замыкания; анализ режимов трёхфазного короткого замыкания в электроэнергетической системе; практические методы расчета режимов трехфазного короткого замыкания в системах электроснабжения; несимметричные переходные процессы в электроэнергетической системе; методы расчета несимметричных коротких замыканий в системах электроснабжения; статическая устойчивость ЭЭС и её элементов; методы анализа статической устойчивости электроэнергетической системы и способы ее улучшения; методы анализа динамической устойчивости электроэнергетической системы и её элементов при коротких замыканиях; сохранение устойчивости сложных электроэнергетических систем.

3.1.5. Качество электрической энергии

Проблема электромагнитной совместимости и анализ параметров качества электроэнергии на промышленных предприятиях; уровни и характер изменения показателей качества электроэнергии в электрических сетях промышленных предприятий; методы нормирования показателей качества электроэнергии; методы расчета показателей качества электроэнергии; устройства, применяемые для повышения качества электроэнергии в сетях промышленных предприятий; экономический ущерб от снижения качества электроэнергии; устройства технических измерений и контроля показателей качества электроэнергии; влияние электрооборудования на показатели качества электроэнергии и электромагнитную обстановку в системах электроснабжения.

4. Критерии и нормы оценки

4.1. Вступительное испытание оценивается по 100-балльной шкале.

(подпись)

(подпись)

4.2. Минимальное количество баллов, подтверждающее успешное прохождение вступительных испытаний при приеме -40.

Разработчики программы:

Зав. кафедрой, профессор, д.т.н., профессор

(должность, ученое звание, степень)

Доцент, к.т.н.

(должность, ученое звание, степень)

В.В. Вахнина

(И.О.Фамилия)

А.Н. Черненко

(И.О.Фамилия)

5. Рекомендуемая литература

- 1. ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
- 2. Аполлонский, С. М. Теоретические основы электротехники [Электронный ресурс] : практикум : учеб. пособие / С. М. Аполлонский. Санкт-Петербург : Лань, 2017. 320 с. : ил. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-2543-3.
- 3. Вахнина, В. В. Системы электроснабжения [Электронный ресурс] : электрон. учеб.-метод. пособие / В. В. Вахнина, А. Н. Черненко ; ТГУ ; Ин-т энергетики и электротехники ; каф. "Электроснабжение и электротехника". Тольятти : ТГУ, 2015. 46 с.
- 4. Васильев, В. И. Интеллектуальные системы защиты информации [Электронный ресурс] : учеб. пособие / В. И. Васильев. Изд. 2-е, испр. Москва : Машиностроение, 2013. 172 с.
- 5. Гуревич, В. И. Устройства электропитания релейной защиты [Электронный ресурс] : проблемы и решения : учебно-практическое пособие / В. И. Гуревич. Москва : Инфра-Инженерия, 2013. 188 с.
- 6. Захаров, О. Г. Надежность цифровых устройств релейной защиты [Электронный ресурс] : Показатели. Требования. Оценки : [монография] / О. Г. Захаров. Москва : Инфра-Инженерия, 2014. 128 с.
- 7. Киреева, Э. А. Электроснабжение и электрооборудование организаций и учреждений: учеб. пособие / Э. А. Киреева. Гриф УМО. Москва: Кнорус, 2015. 233 с.: ил. (Бакалавриат). Библиогр.: с. 230-233. ISBN 978-5-406-03374-6.
- 8. Коробов, Γ . В. Электроснабжение : курсовое проектирование : учеб. пособие для вузов / Γ . В. Коробов, В. В. Картавцев, Н. А. Черемисинова ; под общ. ред. Γ . В. Коробова. Изд. 3-е, испр. и доп. ; гриф УМО. Санкт-Петербург : Лань, 2014. 191 с.
- 9. Крылов, Ю. А. Энергосбережение и автоматизация производства в теплоэнергетическом хозяйстве города [Электронный ресурс] : Частотно-регулируемый электропривод : учеб. пособие / Ю. А. Крылов, А. С. Карандаев, В. Н. Медведев. Санкт-Петербург : Лань, 2013. 176 с.
- 10. Кудрин, Б. И. Электроснабжение : учеб. для студентов вузов, обуч. по направлению подготовки бакалавров "Электроэнергетика и электротехника" / Б. И. Кудрин. 3-е изд., стер. Москва : Академия, 2015. 351 с. : ил. Библиогр.: с. 346-347. ISBN 978-5-4468-1786-3.
- 11. Ополева, Γ . Н. Электроснабжение промышленных предприятий и городов [Электронный ресурс] : учеб. пособие / Γ . Н. Ополева. Москва : Форум : ИНФРА-М, 2016. 416 с. ISBN 978-5-8199-0653-8.
- 12. Ощепков, А. Ю. Системы автоматического управления: теория, применение, моделирование в MATLAB [Электронный ресурс] : учеб. пособие /

- А. Ю. Ощепков. Изд. 2-е, испр. и доп. Санкт-Петербург: Лань, 2013. 208 с.: ЭБС "Лань";
- 13. Пилипенко, В. Т. Электромагнитные переходные процессы в электроэнергетических системах [Электронный ресурс]: учеб.-метод. пособие / В. Т. Пилипенко; Оренбургский государственный университет. Оренбург: ОГУ, 2014. 124 с.: ил. Библиогр.: с. 112. Прил.: с. 113-124. ISBN 978-5-7782-2575-6;
- 14. Потапов, Л. А. Теоретические основы электротехники [Электронный ресурс] : краткий курс : учеб. пособие / Л. А. Потапов. Санкт-Петербург : Лань, 2016. 376 с. : ил. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-2089-6.
- 15. Соловьев, А. Л. Релейная защита городских электрических сетей 6 и 10 кВ [Электронный ресурс] : учебное пособие / А. Л. Соловьев, М. А. Шабад ; под ред. А. В. Беляева. Санкт-Петербург : Политехника, 2016. 175 с. : ил. ISBN 978-5-7325-1100-0.
- 16. Хрущев, Ю. В. Электромеханические переходные процессы в электроэнергетических системах [Электронный ресурс]: учеб. пособие / Ю. В. Хрущев, К. И. Заподовников, А. Ю. Юшков; Томский политехнический университет. Томск: ТПУ, 2012. 153 с. ISBN 978-5-4387-0125-5.
- 17. Шведов, Г. В. Электроснабжение городов [Электронный ресурс] : электропотребление, расчетные нагрузки, распределительные сети : учебное пособие для вузов / Г. В. Шведов. Гриф УМО. Москва : МЭИ, 2012. 268 с. Электронно-библиотечная система "Университетская библиотека ONLINE";
- 18. Электрические станции и сети [Электронный ресурс]: сборник нормативных документов/ Электрон. текстовые данные.- М.: ЭНАС, 2013.- 720 с.