Пояснительная записка

Программа вступительных испытаний по специальной дисциплине для поступающих в аспирантуру по группе специальностей 2.4 «Энергетика и электротехника» специальность 2.4.7 «Турбомашины и поршневые двигатели» составлена в соответствии с федеральными государственными образовательными требованиями к обязательному минимуму, необходимому для полноценной подготовки кадров высшей квалификации по данному направлению.

Программа вступительных испытаний по специальной дисциплине для поступающих в аспирантуру по группе специальностей 2.4 «Энергетика и электротехника» предназначена для подготовки к сдаче вступительного экзамена по специальности 2.4.7 «Турбомашины и поршневые двигатели».

Программа содержит примерный перечень вопросов по научной специальности, список литературы, необходимой для подготовки к сдаче вступительного экзамена.

Кандидат на поступление в аспирантуру должен иметь диплом о высшем образовании (специалитет, магистратура) по выбранной, родственной или профильной специальности.

Поступающий должен иметь подготовку в области организации научно-исследовательской работы, методики проведения и обработки результатов эксперимента, знать физико-математические основы специальности; проявлять системный подход к процессам и явлениям.

1. Порядок проведения вступительного испытания

- 2.1. Вступительное испытание проводится устно по экзаменационным билетам.
- 2.2. Экзаменационные билеты включают в себя 3 вопроса, из которых, два вопроса теоретические и один вопрос практический.
- 2.3. Экзаменационные билеты составлены с опорой на дисциплины, связанных с изучением тепловых, газодинамических, гидродинамических,

механических, физико-химических и информационных процессов, протекающих в установках и системах двигателей внутреннего сгорания и двигателей с внешним подводом тепла.

2.4. Время на подготовку ответа на билет составляет один академический час.

3. Содержание вступительного испытания

№ п/п	Вопросы		
1	Классификация поршневых двигателей. Двигатели с искровым		
	зажиганием и дизели. Области применения двигателей с искровым		
	зажиганием и дизелей.		
2	Приведение масс кривошипно-шатунного механизма.		
3	Резервы и пути совершенствования технико-экономических показателей		
	двигателей внутреннего сгорания.		
4	Аксиальные и дезаксиальные КШМ (двигатели).		
5	Характеристики поршневых ДВС. Скоростные характеристики.		
6	Схема и рабочий процесс роторно-поршневых двигателей. Перспективы		
	применения их на автотранспорте.		
7	Кинематический расчет КШМ. Перемещение, скорость и ускорение		
	поршня.		
8	Работа ДВС на неустановившихся режимах. Переходные процессы.		
9	Схема и рабочий процесс газотурбинных двигателей. Перспективы		
	применения их на автотранспорте.		
10	Равенство модулей крутящего и реактивного моментов двигателя		
	(доказать).		
11	Рабочий процесс двигателей с внешним подводом тепла. Двигатели		
	Стирлинга. Перспективы применения их на автотранспорте.		
12	Неравномерность крутящего момента двигателя. От чего она зависит и		
	как проявляется при эксплуатации ДВС.		
13	Альтернативные типы энергетических установок для автотранспорта.		
14	Причины колебаний двигателя на опорах. Условия уравновешенности ДВС.		
15	Теоретические циклы поршневых ДВС. Анализ цикла Отто.		
16	Выбор угла развала цилиндров V-образных ДВС.		
17	Теоретические циклы поршневых ДВС. Цикл Дизеля.		
18	Теоретические циклы двигателей с наддувом и их анализ.		
19	Анализ уравновешенности двухцилиндровых рядных 4-хтактных и 2-		
	хтактных ДВС.		
20	Микропроцессорные системы управления впрыском топлива, принципы		
	построения и датчики информации.		
21	Действительные циклы 4-хтактных ДВС. Протекание процессов		
	газообмена, сжатия, смесеобразования и сгорания в двигателе с		
	воспламенением от искры и дизеле.		
22	Необходимый момент инерции маховика.		

23	Усилительные и исполнительные механизмы. Конструирование и расчет		
	электромагнитной форсунки.		
24	Действительный цикл 2-хтактного двигателя. Процесс газообмена в 2-		
	хтактном двигателе. Показатели качества газообмена 2-хтактных		
	двигателей.		
25	Наддув ДВС. Агрегаты наддува.		
26	Индикаторные показатели действительного цикла. Экспериментальное и		
	расчетное определение.		
27	Мероприятия для повышения собственной частоты колебаний крутильной		
	системы ДВС.		
28	Индикаторные показатели действительного цикла. Расчетные		
	зависимости.		
29	Методы борьбы с крутильными колебаниями коленчатых валов.		
30	Влияние различных факторов на индикаторные показатели		
	действительного цикла.		
31	Виды маркировки ДВС. Короткоходные, квадратные и длинноходные		
	ДВС.		
32	Газовые турбины. Схемы, виды, применение.		
33	Эффективные показатели поршневых ДВС (мощность, среднее		
	эффективное давление, момент, литровая мощность). Расчетные		
	зависимости.		
34	Турбокомпрессоры. Схемы, типоразмеры, порядок выбора и расчета.		
35	Эффективные показатели ДВС (КПД, удельный эффективный расход).		
	Расчетные зависимости.		
36	Формирование крутящего момента на примере 2-х и 4-х тактного		
27	поршневого ДВС.		
37	Влияние различных факторов на эффективные показатели ДВС.		
38	Расчет вала коленчатого по «разрезной» схеме. Причины		
	неравномерности силовых воздействий на различные шатунные шейки		
39	Вала.		
	Перспективы использования наддува для ДВС автомобилей.		
40	Форсирование ДВС и способы его реализации.		
41	Поршневые кольца. Назначение, виды, и конструкция.		
42	Внешний тепловой баланс ДВС. Его назначение и методы определения.		
43	Жидкостная и воздушная системы охлаждения.		
44	Характеристика тепловыделения и ее значение.		
45	Достоинств и недостатки жидкостной и воздушной системы охлаждения.		
46	Токсичность ДВС и методы определения вредных выбросов.		
	Параметры теплонапряженности деталей двигателя. Пути ее снижения.		
48	Силы, действующие на элементы кривошипно-шатунного механизма.		
50	Способы снижения вредных выбросов ДВС		
	Сторание в дизелях различных типов, его особенности.		
51	Скоростные характеристики ДВС. Методика снятия ВСХ.		
52	Аномалии процесса сгорания в двигателе с принудительным зажиганием.		
53	Нагрев поршня и порядок определения его температуры.		
54	Нагрузочная характеристика. Методика снятия нагрузочных		

	характеристик.		
55	Особенности процесса сгорания топлива в дизелях и ДВС с искровым зажиганием.		
56	Алгоритм расчета температурных полей деталей ДВС.		
57	Регулировочные характеристики по составу смеси.		
58	ДВС с системой впрыска легкого топлива. Схемы, преимущества, недостатки.		
59	Условные механические потери. Определение и методы повышения механического КПД двигателя.		
60	Детонационные характеристики. Методы обнаружения детонации.		
61	Двигатели внутреннего сгорания, работающие на газе.		
62	Способы повышения усталостной прочности деталей ДВС.		
63	Тормозные установки применяемые при испытании ДВС.		
64	Альтернативные топлива, их характеристики и применение.		
65	Принцип работы и общее устройство поршневых ДВС (2-х и 4-х тактных)		
66	Теоретические циклы поршневых ДВС (Отто, Дизеля, Сабатэ-Тринклера) и их сравнительна эффективность.		
67	Действительные циклы и их отличия от теоретических. Коэффициент наполнения, опережение зажигания, фазы газораспределения, теплоемкость газов.		
68	Топлива (горючее) для ДВС и их свойства. Коэффициент избытка воздуха.		
69	Тепловой расчет и тепловой баланс двигателя. Последовательность выполнения.		
70	Измерения мощности, расхода топлива и воздуха при испытаниях ДВС.		
71	Погрешности измерений. Классификация. Динамические погрешности и их оценка.		
72	Первичные измерительные преобразователи на основе эффекта индукции, индуктивности, емкости, Эффектов Холла и термо ЭДС и их применение в двигателестроении.		
73	Механизмы образования токсичных компонентов (CO, CH, NOx).		

4. Критерии и нормы оценки

В конце экзамена комиссия подводит итоги, и выставляется итоговая оценка каждому аспиранту в соответствии с критериями и нормами оценки.

Форма проведения экзамена	Критерии	и нормы оценки
устный	«ОТЛИЧНО»	Правильный и полный ответ на три вопроса билета. Ответ содержательный, глубоко аргументированный с продуманным использованием эскизов, рисунков. Материал излагается свободно, грамотно, уверенно, методически последовательно. Поступающий показал твердые знания темы, обосновывая при этом принятые решения; дал положительные ответы

	на все запанни је вопроси
	на все заданные вопросы.
«хорошо»	Правильные, но не полные ответы на
	три вопроса билета.
«удовлетворительно»	Правильный ответ на два из трех
	вопросов билета. Ответ в основном
	раскрывает содержание работы, однако
	недостаточно аргументирован. Во
	время ответа периодически
	используется заранее подготовленный
	текст. В целом слушатель показал
	знание темы исследования, хотя не на
	все заданные вопросы были даны
	исчерпывающие ответы.
«неудовлетворительно»	Правильный ответ на один из трех
	вопросов билета или ответ не
	представлен ни по одному вопросу
	билета. Ответ делается в основном с
	использованием подготовленного
	заранее текста и слабо раскрывает
	содержание работы. Иллюстративный
	материал используется непродуманно,
	аргументация недостаточная. На
	большинство вопросов правильных
	ответов не дано. Студент слабо
	ориентируется в теме.

5. Рекомендуемая литература

а) основная литература

- 1. Бортников Л.Н. и др. Альтернативные топлива. Современные вопросы применения водорода в поршневых ДВС. Самара: Изд-во СамНЦ РАН, 2016. 159 с.
- 2. Шайкин А.П., Ивашин П.В., Галиев И.Р. Характеристики распространения пламени и их влияние на концентрацию несгоревших углеводородов при добавке водорода в топливно-воздушную смесь энергетических установок и искровым зажиганием: монография Самара, издательство Самарского научного центра РАН, 2014. 202 с.
- 3. Шайкин А.П., Ивашин П.В., Галиев И.Р., Дерячев А.Д. Характеристики распространения пламени и их влияние на образование несгоревших углеводородов и оксида азота в отработавших газах при добавке водорода в топливно-воздушную смесь энергетических установок с искровым зажиганием: монография. Самара: Изд-во СамНЦ РАН, 2016. 259 с.

б) дополнительная литература

- 1. Ерохов В. И. Системы впрыска бензиновых двигателей [Электронный ресурс] : конструкция, расчет, диагностика : учебник / В. И. Ерохов. Москва : Горячая линия Телеком, 2011. 551 с. ISBN 978-5-9912-0130-8.
- 2. Ерохов В. И. Газобаллонные автомобили [Электронный ресурс] : конструкция, расчет, диагностика : учебник / В. И. Ерохов. Москва : Горячая линия Телеком, 2012. 598 с. ISBN 978-5-9912-0201-5.
- 3. Двигатели внутреннего сгорания : учеб. для вузов. В 3 кн. Кн. 3. Компьютерный практикум. Моделирование процессов в ДВС / В. Н. Луканин [и др.] ; под ред. В. Н. Луканина [и др.]. Изд. 3-е, перераб. Москва : Высш. шк., 2007. 414 с.
- 4. Автомобильный справочник = Automotive Handbook : пер. с англ. 2-е изд., перераб. и доп. Москва : За рулем, 2004. 991 с. : ил. Предм. указ.: с. 970-987. ISBN 5-85907-327-5 : 329-71.
- 5. Конструирование двигателей внутреннего сгорания: учеб. для вузов / Н. Д. Чайнов [и др.]; под ред. Н. Д. Чайнова. Гриф МО. Москва: Машиностроение, 2008. 495 с.: ил. Библиогр.: с. 484.
- 6. Райков И. Я. Испытания двигателей внутреннего сгорания: учеб. для вузов / И. Я. Райков. Москва: Высш. шк., 1975. 319, [1] с.
- 7. Колчин А. И. Расчет автомобильных и тракторных двигателей : учеб. пособие для вузов / А. И. Колчин, В. П. Демидов. Изд. 4-е, стер. ; Гриф МО. Москва : Высш. шк., 2008. 496 с. : ил. Библиогр.: с. 493.
- 8. Двигатели внутреннего сгорания: учеб. для вузов. В 3 кн. Кн. 1. Теория рабочих процессов / В. Н. Луканин [и др.]; под ред. В. Н. Луканина [и др.]. Изд. 3-е, перераб. и испр. Москва: Высш. шк., 2007. 479 с.
- 9. Двигатели внутреннего сгорания : учеб. для вузов. В 3 кн. Кн. 2. Динамика и конструирование / В. Н. Луканин [и др.] ; под ред. В. Н. Луканина, М. Г. Шатрова. Изд. 3-е, перераб. Москва : Высш. шк., 2007. 400 с.
- 10. Кавторадзе Р.З. Теория поршневых двигателей: учебник для вузов. М.: Изд-во МГТУ им. Н.Э.Баумана, 2008. 720 с.

11. Шароглазов Б.А. Поршневые двигатели: теория, моделирование и расчет процессов: учебник по курсу «Теория рабочих процессов и моделирование процессов в ДВС / Б.А. Шароглазов, В.В. Шишков; под ред. засл. деят. науки РФ, профессора, доктора техн. наук Б.А. Шароглазова. — Челябинск: Издательский центр ЮУрГУ, 2011. 406 с.